Serum Amyloid A (SAA): a Concise Review of Biology, Assay Methods and Clinical Usefulness

Toshiyuki Yamada
Department of Clinical Pathology, Jichi Medical School, Tochigi, Japan

Serum amyloid A (SAA) is a family of proteins encoded in a multigene complex. Acute phase isotypes SAA1 and SAA2 are synthesized in response to inflammatory cytokines. SAA and C-reactive protein (CRP) are now the most sensitive indicators for assessing inflammatory activity. In viral infection and kidney allograft rejection, SAA proved more useful than CRP. Development of convenient assay methods for SAA will facilitate its use in clinical laboratories.

Key words: Serum amyloid A; Inflammation; Assay method; Clinical significance; C-reactive protein.

Introduction

Serum amyloid A (SAA) was discovered a quarter of a century ago as a plasma component which shares antigenicity with amyloid AA, the chief fibrillar component in reactive AA amyloid deposits (1-3). Although its exact biochemical nature was unclear, it was soon noticed that this component increases its plasma concentrations in inflammatory conditions (4). Then, SAA was identified as an apolipoprotein of high density lipoprotein (HDL) (5). To date, the medical profession has paid attention to SAA not only as a fibrillogenic precursor in AA amyloidosis but also in its role in inflammatory reactions and lipoprotein metabolism or atherogenesis (6-9). In spite of such interests and expectation as a useful inflammatory marker, SAA has not been widely used as a routine clinical test. This is mostly due to technical difficulties in large scale purification of SAA, stable production of antibodies with high titer, development of an assay system, and standardization of the assay, as mentioned below. The author’s group solved those problems and established an assay system suitable for the clinical laboratory (10). This method was the first to become commercially available for wide use. A second, developed by a research group in Germany, is now available from an American manufacturer. Thus, SAA is coming out of a limited research area, i.e. amyloidogenesis or atherogenesis and spreading to a general clinical field. This review will first assess biological and pathological aspects of SAA, and then examine the assay methods for SAA and their clinical usefulness.

Biochemical and Physiological Aspects of SAA

Structure

SAA, a polymorphic protein, consists of several genetically determined isotypes (7, 11-13). In humans, an individual has three isotypes in plasma, SAA1, SAA2, and SAA4. The gene coding SAA3 is not expressed (14). SAA1 and SAA2 are plasma precursors of amyloid fibrils and behave as an acute phase reactant (APR) in plasma. Generally, and also in this review, these acute phase isotypes are referred to as SAA. Although SAA1 is not distinguished from SAA2 by antibodies used in the assay, it is believed to comprise 70% or more of plasma SAA concentration (11). SAA1 and SAA2 have three (α, β, γ) and two (α, β) common allelic variants, respectively (15, 16) (Figure 1). There is a difference in frequency of SAA1 alleles between races. Three alleles appear evenly in the Japanese population, while α is dominant (80-90%) and γ is rare in the Caucasian population (17-19). For SAA2, α is dominant (80-90%) and distribution is similar among races (20, 21).

The acute phase SAA is a single polypeptide with

![Fig. 1](The primary structure of acute phase SAA. Amino acid sequence of SAA1α is shown. Residues substituted among isotypes are underlined. For isotypes other than SAA1α, only residues different from SAA1α are shown. * The reported protein (SAA1β) has Asp as residue 72 (104). Genomic DNA of SAA1β, however which was separately reported (12), indicates Gly at this position. A project recommending new nomenclature of SAA is ongoing and will resolve this discrepancy.)
104 amino acid residues, which often lack amino-termin
tinal arginine because of a posttranslational modifica-
tion. Although the exact tertiary structure of SAA is un-
known, the critical role of the amino terminal 10
residues has been noted in amyloid fibril formation
and HDL binding (22, 23). SAA4 is a constitutive apo-
lipoprotein in HDL and it does not behave like APR (24,
25). SAA4 has 55% homology in its primary structure
with acute phase SAA (13). For measurement of acute
phase SAA, cross-reactivity of antibodies with SAA4
should be avoided, since the physiological concentra-
tion of SAA4 is 10-times higher than that of acute phase
SAA.

Synthesis and metabolism (Figure 2)
SAA synthesis is induced in various tissues by the stim-
ulation of inflammation-related cytokines such as inter-
leukin-1 (IL-1), interleukin-6 (IL-6) and tumor necrosis
factor-α (TNFα) (26–28). Most of plasma SAA probably
originates in the liver. Previous investigation has dem-
onstrated extrahepatic synthesis of SAA (29), but its ex-
tent and biological significance is unknown. Immedi-
ately after SAA is released from the cells, it binds with
HDL and circulates throughout the system. In the circu-
lation, SAA rapidly clears; its half life in mice is 30–50
minutes (30), considerably faster than that of apolipo-
protein A-I (apoAI), the main protein constituent of
HDL. SAA may be attached or internalized into phago-
cytic cells as HDL-associated forms (31), and degraded
by lysosomal proteinase there (32–34). Whether con-
siderable amounts of SAA stay and function as an HDL-
free form in tissues is unknown. In drawn plasma, at
least, almost all SAA is present in high molecular form
(most in HDL and little in other lipoproteins). This pheno-
menon is important, because most SAA assays are
directed to SAA in HDL, not SAA monomer, which
reacts with antibodies differently from the lipid-bound
form.

Functional and Pathological Aspects of SAA

Inflammation
Since plasma SAA concentration changes from 1 to
1000 mg/l corresponding to inflammatory activity,
some researchers have proposed that SAA may play a
critical role in the process of inflammatory reactions.
Among these roles are the inhibition of antibody pro-
duction by lymphocytes (35), inhibition of platelet ag-
glutination (36), inhibition of oxidative burst reaction in
neutrophils (37), induction of collagenase (38), and
chemotaxis for neutrophils and monocytes (39). These
imply that SAA functions to preserve homeostasis by
preventing further progress of injuries or by repairing
damaged tissues. However, some findings suggest a
proinflammatory role of SAA (40, 41).

Lipoprotein metabolism and atherogenesis
Inflammatory conditions greatly alter HDL composi-
tion, reducing levels of apoAI and apoAII, and increas-
ing those of SAA (8, 9, 42). Reduction of apoAs is due to
lowered synthesis in the liver and probably displace-
ment from HDL by SAA, which is observed as an in vi-
tro phenomenon (43). ApoAI plays a central role in the
reverse cholesterol transport system, which may be es-
sential for preventing atherogenesis. Some propose
that SAA may be increased in HDL in order to compen-
sate for defects in this system, which may be impaired
by apoAI reduction in inflammation. Experimental find-
ings support the notion that SAA-rich HDL gains high
affinity binding to macrophages where cholesterol
should be removed (44), and that SAA enhances leci-
thin : cholesterol acyltransferase, a key enzyme for cho-
lesterol esterification (45). SAA is expressed also in the
artery wall (46, 47) and is present in atherosclerotic les-
ions (48). We showed experimentally that SAA-loaded
LDL has increased non-specific affinity with skin fibro-
basts and macrophage-like cells (49). It is now under
discussion whether SAA promotes or prevents athero-
genesis (8, 9, 50).

Amyloid precursor
SAA, or more precisely, its amino-terminal 50–76 resi-
dues, form insoluble fibrils in the extracellular spaces.
This disorder, reactive amyloidosis, develops in
chronic inflammatory diseases such as rheumatoid ar-
thritis (RA) and tuberculosis (6, 7). Approximately 10% of
RA patients are believed to have amyloid deposits,
according to the studies using gastroendoscopic bi-
opsy (51). Amyloid deposits are systemic and progres-
sive; in advanced stages they cause severe diarrhea
and renal failure (52, 53). Prolonged hyperproduction

Fig. 2 Synthesis of SAA and catabolic pathway leading to amyloidogenesis.
of precursor SAA in underlying diseases is essential for development of amyloidosis, but not sufficient by itself. Impaired processing of SAA, that is, disturbance of SAA degrading system (54, 55) and participation of other components, may be another factor (Figure 2) (56). Recent studies genetically link SAA1 allele (γ) with susceptibility to reactive amyloidosis in Japanese patients with RA (17).

Currently, the most practical way to prevent or delay progressive amyloid deposition is by reducing inflammatory activity, represented by plasma SAA levels. Viewed in these terms, frequent monitoring of SAA levels is recommended in patients with chronic inflammatory disorders or in those who have been diagnosed with amyloidosis.

Assay Method for SAA

Materials

Large scale preparation of SAA requires significant amounts of acute phase serum, but a steady supply is difficult to obtain. An *E. coli* expression system has been shown to generate satisfactory amounts of human SAA (57). Our own group is now utilizing such recombinant SAA for immunization and will soon use it as an assay standard. Not a few researchers had difficulty in producing antibodies either polyclonal or monoclonal, with high avidity against the SAA antigen (58). This may be due to the hydrophobic nature of purified SAA and high homology of the structure of SAA in various species (7). Frequent immunization with large amounts of antigens is necessary for the production of polyclonal antibodies. Rats, which are believed to lack mature SAA proteins, seem to have a fair immune response against human SAA. In fact, rat-derived monoclonal anti-SAA antibodies were successfully produced and utilized in this laboratory (59).

Similarly to other apolipoproteins, purified protein is not suitable for the assay standard in any immunoassay for SAA when non-denatured serum or plasma are used (60). Therefore, acute phase HDL, SAA content of which is determined by electrophoresis and then protein staining (Figure 3), is used in most assays (60). Not surprisingly, there are significant variations in the absolute values of SAA among the assay methods, according to the international survey (61). These variations are due not only to different estimation of SAA content when one compares in-house standards one with the other, but also to absence of parallel responses in in-house standards. At this moment, each assay should maintain its own SAA values, which should compare with international standards, which the World Health Organization has recently approved (61).

To avoid the use of insoluble SAA proteins, a recombinant SAA2 was produced as a relatively soluble form, and was used for immunization and as the assay standard in a recent report (62). Interestingly, the SAA2 standard was found to work well in the presence of 25% propan-2-ol in the enzyme-linked immunosorbent assay.

Assay system

Various assay methods for SAA such as radioimmunoassay, radial immunodiffusion, and enzyme-linked immunosorbent assay (ELISA) have been reported. However, these are mostly for use in research laboratories. To introduce SAA measurements to clinical laboratories, an automated method, either fully or partially, is desirable. Also, the method should be rapid enough to be utilized in acute diseases such as acute myocardial infarction and kidney allograft rejection. Concentrations of serum SAA in patients’ samples are more than 10 mg/l, which do not always require highly sensitive assays like ELISA. We developed an automated latex agglutination immunoassay, the kinetic photometry of anti-SAA coated latex particles (10), which is now commercially available. This allows us to determine SAA levels within 10 minutes. Originally, use of the reagent for this assay was limited to a specific analyzer. Later, however, the manufacturer developed a reagent which can be implemented on commonly used automated analyzers (63). Another system, introducing latex technology to the original nephelometric immunoassay (64), is now available worldwide.

ELISA is also easy to use. A couple of manual methods are commercially available. An automated method has been reported (65), but has not been widely used. A unique method, “direct binding ELISA”, is worth noting (66). This method utilizes the preferential binding of SAA to the plastic surface of microtiter plates. This property of SAA is, in general a disadvantage. A significant fraction of SAA can be lost because of its attachment to the inner surface of sample containers, tubes, reaction cuvettes, and the like. ELISA is expected to measure low levels of SAA because of its high level of sensitivity. We have developed a highly sensitive ELISA, the detection limit of which is 100 ng/l of SAA, by the use of monoclonal and polyclonal antibodies (67). This method is now being utilized for measurement of SAA in body fluids other than plasma, and supernatant of cell cultures (Table 1). In fact, production of SAA pro-

Fig. 3 Determination of SAA contents in acute phase HDL. Purified SAA (110, 220, 330, and 440 mg/l in lane 1 to 4, respectively) and acute phase HDL (lane 5 to 7) were subjected to SDS-PAGE. SAA contents in the HDL were determined against purified SAA. Such HDL can be used as the primary standard for the SAA assay. This analysis can also be used to study the accuracy of SAA immunoassays (10).
tein by a human monocytoid cell line THP-1, where SAA mRNA has been quantified but SAA protein has not been measured (68), can be evaluated quantitatively (our unpublished findings).

Thus, the assay method should be chosen depending on the intended purpose (Table 2). For bedside testing, a rapid qualitative test has been developed in our laboratory (unpublished). The test, based also on latex agglutination, can detect SAA at levels of 20 mg/l in whole blood, a condition which indicates the presence of inflammation.

Clinical Implications of SAA Test

First class acute phase reactant

In inflammatory states several parameters appear in plasma and in rather strict sequence (27, 28, 69, 70). After the occurrence of inflammatory stimuli, cytokines such as TNFα, IL-1 and IL-6 are increased within 2–3 hours. SAA and C-reactive protein (CRP) are next. These latter two start to elevate in 3–6 hours, reach their peaks in 2–3 days, and return to the basal levels at 5–7 days (Figure 4). These two are called first class APR because they are the most sensitive plasma proteins indicating inflammatory activity. Meanwhile, the other APRs, such as α1-antitrypsin, α1-acid glycoprotein, ceruloplasmin and haptoglobin reach their peaks in 3–5 days.

The SAA of healthy subjects is below 10 mg/l, mostly below 3 mg/l. SAA levels show no difference between genders. In the elderly, however, the levels are slightly higher (71). The concentration can be increased to several thousand mg/l, depending on the severity of inflammation. Basically, any inflammatory conditions, including infection, trauma and invasive malignant disease, can cause the elevation of plasma SAA (72–82). However, the magnitude of elevation varies among disorders. SAA increases moderately to markedly (100–1000 mg/l) in bacterial and fungal infections, invasive malignant diseases, tissue injuries like acute myocardial infarction, and autoimmune diseases such as rheumatoid arthritis and vasculitis. Mild elevation (10–100 mg/l) is often seen in viral infections, systemic lupus erythematosus and localized inflammation or tissue injuries like cystitis and cerebral infarction. An increase of SAA to high levels in these disease groups may indicate involvement of bacterial infection or severe tissue injuries.

Advantages compared with CRP test (Figure 5)

Disorders mentioned above, of course, can be detected by the CRP test because the synthesis of both SAA and CRP may be regulated by similar cytokines. For many years, CRP has been widely known as the most reliable inflammatory marker. Here, discussion focuses on those situations in which the SAA test is more useful than the CRP test.

The amplitude of the increase of SAA is similar to or greater than that of CRP. Sometimes, as in patients with severe burns, there is a greater response of SAA (83). In viral infections, SAA levels are often slightly elevated when CRP is at or below the detection level. Some re-
searchers have proposed using SAA measurements in testing for infections caused by adenovirus, measles, mumps, varicella, rubella, influenza and others (84–86). In these conditions, clear elevation of CRP may indicate involvement of bacterial infections or tissue injuries. Since the physiological level of SAA is approximately ten times higher than that of CRP, it may be easier to detect slightly elevated SAA than CRP. Another possibility, according to a recent report, is that the mRNA of SAA has a longer half life than that of CRP in cultured hepatoma cells (87). CRP may return to the basal level faster than SAA. Whichever it is, the SAA test is recommended in conditions in which CRP shows poor response.

A recent report proposes that SAA predicts more accurately poor prognosis of elderly inpatients than does CRP (88). Indeed, SAA probably will detect some events such as minor infection and ischemic tissue injury, which may occur in the elderly and patients with chronic disorders such as diabetes mellitus and hemodialysis. Slightly elevated CRP has been proposed as a risk factor or as an indicator of disease outcome in cardiovascular disorders (89–92). The published data for SAA, on the other hand, are scanty.

The most prominent discrepancy between SAA and CRP has been seen in patients who undergo kidney transplantations (Figure 6) (93–97). At the rejection of a transplant, SAA is markedly elevated along with serum creatinine. Elevation of creatinine, though the best confirmation of the body’s rejection of the kidney, is often very slight and needs careful observation. Since SAA changes are dramatic enough to be recognized easily, patients should be monitored by both SAA and creatinine. In contrast, CRP responds poorly to such rejections, not only in early phases but throughout subsequent days. Thus, CRP’s low levels contrast with SAA’s high responses. One reason for this poor response of CRP may be the therapeutic use of cyclosporin (98) and corticosteroids, though the mechanism is unknown. In fact, relatively low CRP levels have been observed in patients with cystic fibrosis (99), systemic lupus erythematosus, bronchial asthma under corticosteroid therapy (100). The same is observed in patients with psoriasis and corticosteroid resistant glomerulonephropathy, when they are administered cyclosporin (our unpublished findings).

There are no data to indicate the relationship between CRP and SAA when other immunosuppressive drugs are used. Thus, at least measuring the SAA levels is strongly recommended for patients who are administered cyclosporin and corticosteroids, i.e. in transplantation of liver and bone marrow (101, 102). In Crohn’s disease and ulcerative colitis, SAA is superior to CRP as an activity indicator (103). Both the effect of therapies and an influence of the disorders themselves, especially autoimmune diseases, on both SAA and CRP concentrations should be assessed further.

Conclusions

SAA is not only pathogenic for reactive amyloidosis but it also plays roles in the modulation of inflammation and atherosclerosis. SAA can detect inflammatory conditions, more sensitively than any other acute phase reactant. In time, the availability of assay methods and their wide use should corroborate these SAA values.

Acknowledgements

The author thanks Dr. Yoshihisa Itoh for his helpful advice and Mr. Atsufumi Wada for his excellent technical support throughout the development of SAA assay, and Mr. Robert Smith for his help in editing.

References

65. Shainkin-Kestenbaum R, Wilnikoff Y, Cristal N. Serum amy-

Received 30 November 1998; accepted 24 February 1999

Corresponding author: Toshiyuki Yamada, M. D., Department of Clinical Pathology, Jichi Medical School, Minamikawachi, Tochigi 329-0498, Japan
Tel: +81-285-44-2111, Fax: +81-285-44-9947
Email: toshiyam@jichi.ac.jp